Verification-Based Model Tuning

نویسندگان

  • Caren Marzban
  • David W. Jones
  • Scott A. Sandgathe
چکیده

All numerical models (e.g., Numerical Weather Prediction models) have certain parameters within model algorithms which effect forecasts to a different degree, depending on the forecast quantity. The specific values of these model parameters are determined either theoretically using fundamental physics laws but incorporating necessary approximations to reduce computational cost, or empirically using observations from field experiments where observational error introduces uncertainty. In either case, the exact value of the parameter is often unknown a priori, and so their values are usually set to improve forecast quality through some form of forecast verification. Such an approach to model tuning, however, requires knowledge of the observations to which the forecasts must be compared, and therefore, a multitude of highly detailed experimental cases in order to fully resolve parameter values, a data set very difficult to obtain. A knowledge of the relationship between model parameters and forecast quantities, without reference to observations, can not only aid in such an observation-based approach to model tuning, it can also aid in tuning the model parameters according to other criteria that may not be based on observations directly, e.g., a desire to affect the forecasts according to some longterm experience of a forecaster. The main goal of our work has been to develop a framework for representing the complex relationship between model parameters and forecast quantities, without any reference to observations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

Adaptive Tuning of Model Predictive Control Parameters based on Analytical Results

In dealing with model predictive controllers (MPC), controller tuning is a key design step. Various tuning methods are proposed in the literature which can be categorized as heuristic, numerical and analytical methods. Among the available tuning methods, analytical approaches are more interesting and useful. This paper is based on a proposed analytical MPC tuning approach for plants can be appr...

متن کامل

Modeling of Riyadh Sewage Treatment Plant: 1-Model Development, Verification and Simulation

In Saudi Arabia, the Riyadh Sewage Treatment Plant (RSTP) uses the activated sludge technology as the secondary treatment process for sewage. Due to the complex nature of the process, a rather simplified, yet practical, steady state model that captures the most important features of the RSTP was developed. Actual operating and design conditions were obtained from RSTP data bank. The monthly ave...

متن کامل

An ANOVA Based Analytical Dynamic Matrix Controller Tuning Procedure for FOPDT Models

Dynamic Matrix Control (DMC) is a widely used model predictive controller (MPC) in industrial plants. The successful implementation of DMC in practical applications requires a proper tuning of the controller. The available tuning procedures are mainly based on experience and empirical results. This paper develops an analytical tool for DMC tuning. It is based on the application of Analysis of V...

متن کامل

Adaptive Simplified Model Predictive Control with Tuning Considerations

Model predictive controller is widely used in industrial plants. Uncertainty is one of the critical issues in real systems. In this paper, the direct adaptive Simplified Model Predictive Control (SMPC) is proposed for unknown or time varying plants with uncertainties. By estimating the plant step response in each sample, the controller is designed and the controller coefficients are directly ca...

متن کامل

A short introduction to two approaches in formal verification of security protocols: model checking and theorem proving

In this paper, we shortly review two formal approaches in verification of security protocols; model checking and theorem proving. Model checking is based on studying the behavior of protocols via generating all different behaviors of a protocol and checking whether the desired goals are satisfied in all instances or not. We investigate Scyther operational semantics as n example of this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013